Model weights and the foundations of multimodel inference.
نویسندگان
چکیده
Statistical thinking in wildlife biology and ecology has been profoundly influenced by the introduction of AIC (Akaike's information criterion) as a tool for model selection and as a basis for model averaging. In this paper, we advocate the Bayesian paradigm as a broader framework for multimodel inference, one in which model averaging and model selection are naturally linked, and in which the performance of AIC-based tools is naturally evaluated. Prior model weights implicitly associated with the use of AIC are seen to highly favor complex models: in some cases, all but the most highly parameterized models in the model set are virtually ignored a priori. We suggest the usefulness of the weighted BIC (Bayesian information criterion) as a computationally simple alternative to AIC, based on explicit selection of prior model probabilities rather than acceptance of default priors associated with AIC. We note, however, that both procedures are only approximate to the use of exact Bayes factors. We discuss and illustrate technical difficulties associated with Bayes factors, and suggest approaches to avoiding these difficulties in the context of model selection for a logistic regression. Our example highlights the predisposition of AIC weighting to favor complex models and suggests a need for caution in using the BIC for computing approximate posterior model weights.
منابع مشابه
Improving the Prediction of Winter Precipitation and Temperature over the Continental United States: Role of the ENSO State in Developing Multimodel Combinations
Recent research into seasonal climate prediction has focused on combining multiple atmospheric general circulation models (GCMs) to develop multimodel ensembles. A new approach to combining multiple GCMs is proposed by analyzing the skill levels of candidate models contingent on the relevant predictor(s) state. To demonstrate this approach, historical simulations of winter (December–February, D...
متن کاملReducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination
[1] Model errors are inevitable in any prediction exercise. One approach that is currently gaining attention in reducing model errors is by combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictions...
متن کاملMultimodel inference and adaptive management.
Ecology is an inherently complex science coping with correlated variables, nonlinear interactions and multiple scales of pattern and process, making it difficult for experiments to result in clear, strong inference. Natural resource managers, policy makers, and stakeholders rely on science to provide timely and accurate management recommendations. However, the time necessary to untangle the com...
متن کاملEffective soil moisture estimate and its uncertainty using multimodel simulation based on Bayesian Model Averaging
Various hydrological models have been developed for estimating root zone soil moisture dynamics. These models, however, incorporated their own parameterization approaches indicating that the output from the different model inherent structures might include uncertainties because we do not know which model structure is correct for describing the real system. More recently, multimodel approaches u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 87 10 شماره
صفحات -
تاریخ انتشار 2006